欧美A片

 

701 Item(s) found

Learn how EEEngineering uses ETAP to transform power studies into engaging, interactive presentations

In most cases, SCCAF (Short Circuit Coordination Arc Flash) studies are done by engineering firms, which then submit reports to facility owners. The challenge is that those reports tend to be lengthy (up to 5,000 pages), not engaging, and hard to grasp for facility personnel. ETAP's powerful graphical and presentation tools can help make those reports livelier, informative, and more engaging. This case study will discuss how you can summarize lengthy power studies reports within just a 30-minute interactive meeting, and highlight how the final ETAP model can be used, with its powerful graphical interface and presentation tools, including Data Blocks, Multiple Presentation layers, Sequence of Operations, and Arc flash calculator.

How Eradeh uses ETAP to study unbalanced harmonics in EV charging stations to mitigate disruptions

The escalating demand for fleet electrification across the U.S. presents a significant challenge to existing distribution infrastructure, necessitating EV charging management strategies to meet electrical energy demands and address power quality issues. Level 2 and Level 3 EV chargers, equipped with power electronic converters and PWM technology, generate non-sinusoidal currents, exacerbating power quality concerns at individual sites. The effect of rapid voltage changes (RVC) introduced by this equipment is also discussed. This case study features insights and observations from field-recorded measurements of unbalanced (per-phase) harmonic distortions at a site with over 300 electric van charging stations. The unbalanced harmonic analysis (UBHA) conducted by Eradeh Power Consulting using ETAP Software for the site, revealed distortion limits being exceeded for individual phase currents and voltages as well as power distribution equipment rating overloads (such as transformer K-rating and cable thermal limits). The presentation also discusses how unbalanced harmonic distortions calculated within the site and at the point of common coupling (PCC) can be mitigated using techniques such as the use of active / passive harmonic filters amongst others. 

How Nexamp Energy uses ETAP for higher quality and accuracy in BESS DC arc flash analysis

Engineers face unique challenges when calculating DC Arc Flash (DCAF) incident energy for Battery Energy Storage Systems (BESS). Battery short circuit current is highly variant, and factors such as battery chemistry and the installation arrangement of BESS contribute to significant differences in short circuit behavior. As well, traditional methods of calculating DCAF may not be sufficient when it comes to BESS. Nexamp Energy studied these variations, including considerations for personal protection equipment (PPE). The Transient DC Arc Flash solution provided by ETAP was also examined to highlight the usefulness of model validation and the importance of high quality analysis methods for providing better accuracy in DCAF analysis for BESS.

Learn how Mangan determines the optimal arc flash mitigation method for each project using ETAP

Multiple arc flash incident energy mitigation methods are available, but how does an engineer know which is best for their client? This presentation identifies an approach to follow to pick the method, considering effectiveness, practicality, feasibility, and overall best option for realistic study results. With extensive experience with arc flash studies for many clients of all sizes, Mangan provides a real world demonstration of a project for a refinery client. The interplay between motor starting and arc flash analysis was evaluated, and mitigation recommendations were customized for the system. The challenges encountered during mitigation are identified, and the proposed solution is analyzed using ETAP Load Flow, Short Circuit, Arc Flash and Motor Acceleration Analysis. Safe motor operation, safe motor starting and arc flash protection are provided through customized mitigation methods and thoughtful system design.

Red Sea Project: Learn how SEPCOIII is optimizing renewable plant control & power systems with ETAP

This Red Sea Project is a groundbreaking endeavor in Saudi Arabia under the Saudi Vision 2030 economic development program. The project is powered by a fully renewable energy system, including large-scale solar photovoltaic (PV) system and a substantial 1.3 GWh energy storage system, effectively providing 100% clean energy to the development. As the Engineering, Procurement and Construction firm for this project, SEPCOIII has been involved with the design and construction of a wide range of permanent utility assets, including support facilities such as desalination plants, power generation facilities and distribution networks for water, electricity and natural gas. In this presentation, learn how SEPCOIII relied on ETAP's Advanced Distribution Management System (ADMS) to assist with the technology challenges for the project’s distributed energy power system, and how the solution is being used to manage and supervise the power distribution system to achieve better optimizations and improve system stability.

ETAP 2024-New Features

ETAP 2024-New Features

ETAP 2024 is here! The integrated design and operation solutions featuring a new user interface designed to maximize efficiency, enhance productivity, and simplify the overall user experience.

?Introducing Solar Feeder Hosting in ETAP 2024

Discover the new Feeder Hosting Capacity module provided in ETAP 2024 to support solar PV systems being integrated into modern distribution networks. Incorporating PV arrays into existing feeders presents several challenges, including overvoltage, backflow, thermal overloading, protection mis-coordination, and increased harmonic distortion. To address these issues, it is essential to perform feeder hosting capacity (FHC) studies, which assess the optimal amount and placement of PV installations. By leveraging ETAP 2024's Feeder Hosting Capacity module, engineers and utilities can confidently integrate renewable energy sources into their grids while ensuring optimal performance and sustainability. The three key analysis options provided in ETAP FHC, Nodal HC, Stochastic HC and Impact Analysis are described in detail, along with how smart inverters are addressed.

SEE Electrical Expert Introduction

Discover SEE Electrical Expert V5R1's new version with new functionalities: the new user interface, new context menu, projects explorers, dialog boxes for CAD attributes, insertion palettes, editor for customizing panel manufacturing plans generated by 3D editor, multi-user dictionary for project translations, and many other new features to help you create your schematics faster and more efficiently.

Power System Management System (PSMS)

Power System Management System (PSMS)

Power management system software is the smart choice for both small and large electrical utility systems, generation plants, industrial sites, manufacturing facilities, and off-shore oil platforms.

Dynamics & Transients Analysis

Dynamics & Transients Analysis

Simulate sequence-of-events, actions, and disturbances to evaluate system stability and transients by utilizing accurate power system dynamic models with complex machine control block diagrams and systems.