欧美A片

 

118 Item(s) found

Learn how Mangan determines the optimal arc flash mitigation method for each project using ETAP

Multiple arc flash incident energy mitigation methods are available, but how does an engineer know which is best for their client? This presentation identifies an approach to follow to pick the method, considering effectiveness, practicality, feasibility, and overall best option for realistic study results. With extensive experience with arc flash studies for many clients of all sizes, Mangan provides a real world demonstration of a project for a refinery client. The interplay between motor starting and arc flash analysis was evaluated, and mitigation recommendations were customized for the system. The challenges encountered during mitigation are identified, and the proposed solution is analyzed using ETAP Load Flow, Short Circuit, Arc Flash and Motor Acceleration Analysis. Safe motor operation, safe motor starting and arc flash protection are provided through customized mitigation methods and thoughtful system design.

Red Sea Project: Learn how SEPCOIII is optimizing renewable plant control & power systems with ETAP

This Red Sea Project is a groundbreaking endeavor in Saudi Arabia under the Saudi Vision 2030 economic development program. The project is powered by a fully renewable energy system, including large-scale solar photovoltaic (PV) system and a substantial 1.3 GWh energy storage system, effectively providing 100% clean energy to the development. As the Engineering, Procurement and Construction firm for this project, SEPCOIII has been involved with the design and construction of a wide range of permanent utility assets, including support facilities such as desalination plants, power generation facilities and distribution networks for water, electricity and natural gas. In this presentation, learn how SEPCOIII relied on ETAP's Advanced Distribution Management System (ADMS) to assist with the technology challenges for the project’s distributed energy power system, and how the solution is being used to manage and supervise the power distribution system to achieve better optimizations and improve system stability.

Modeling and Verification of Benchmark Test Feeder Systems with DER in ETAP

Washington State University collaborates with IIT and ETAP on developing benchmark test feeder systems for the DOE UI-ASSIST project, showcasing ETAP's capabilities through the design and modeling of the IIT Rural Benchmark and modified IEEE 123-node systems, with validation conducted across MATLAB/SIMULINK and ETAP for various distribution studies.

Energy Efficiency Optimization for Offshore Oil & Gas Installations

Energy opportunity lies in leveraging emerging technologies like distributed energy resources analytics, blockchain, and AI to enhance energy efficiency, demonstrated by a 9% reduction in energy consumption and increased equipment life at Block 5 of Al Shaheen Oil Field through ETAP's power and demand management, network self-healing capabilities, and integration of new equipment and services.

Fuel Cell Modeling, Sizing and Standards in Micro-grid

Fuel cell and electrolyzer systems, employed from small-scale to grid-level applications, serve various grid support functions and energy optimization objectives, relying on intelligent energy management systems (EMS) and control strategies, yet face challenges due to the absence of standardized distributed energy resources sizing and lack of high-fidelity circuit model data, which will be addressed in the upcoming presentation, alongside discussions on cell-level fuel cell modeling in ETAP and its application in micro-grid optimization for net zero energy-emission adhering to relevant standards/grid-codes.

Optimization of Battery Energy Storage System Sizing for Hybrid System in PHU QUY Island

To meet increasing load demands on Phu Quy island, plans involve installing additional wind and solar power plants, yet due to renewable energy's dependence on weather conditions, the diesel power plant remains crucial, prompting a study on the optimal size of Battery Energy Storage Systems (BESS) to support renewable energy integration and optimize costs.

Predictive Analysis in Electric Distribution Systems with presence of Distributed Generation

Incorporating Distributed Generation (DG) into distribution systems poses challenges due to the variability of renewable sources and fault occurrences, necessitating real-time monitoring and forecasting. Using ETAP-RT software, this study simulates a DG system's real-time behavior, including four events like grid contingencies and DG integration, offering insights for network planning and operation.

Assessment of Renewable Energy Integration in a 250 MW Peak Load Islanded Power System Using ETAP UDM Models

This comprehensive study, initiated in 2019 and spanning evaluations from 2020 to 2023, examines the evolving landscape of power generation, focusing on the transition from fuel-based dominance to anticipated renewable energy prominence by 2030, employing worst-case operational scenarios to assess system resilience and efficiency, supported by ETAP's robust multi-dimensional database structure and dynamic model integration, with upcoming insights into model behavior and tool utility aimed at enhancing understanding and preparation for future power generation challenges and opportunities.

Navigating Grid Stability in Renewable Energy-Rich Environments: ETAP's Operator Training Simulator

In transmission systems grappling with the unpredictability of renewable energy sources, ETAP's Operator Training Simulator (OTS) provides a cutting-edge solution, leveraging digital twin technology and real-time data to anticipate system performance uncertainties, as demonstrated through its integration into Web Aruba's operations, enhancing grid resilience and efficiency amidst renewable energy variability.

Development of a Python Optimization Model for the Analysis and Planning of PMU Locations in Electrical Networks?

The proposed methodology aims to seamlessly integrate an optimization algorithm with etapPY, minimizing the number of PMUs required, strategically placing them within the electrical network, and enhancing overall system observability to empower network operators with advanced analytical tools for comprehensive monitoring and analysis.